Ammonium-Acetate Is Sensed by Gustatory and Olfactory Neurons in Caenorhabditis elegans

نویسندگان

  • Christian Frøkjær-Jensen
  • Michael Ailion
  • Shawn R. Lockery
چکیده

BACKGROUND Caenorhabditis elegans chemosensation has been successfully studied using behavioral assays that treat detection of volatile and water soluble chemicals as separate senses, analogous to smell and taste. However, considerable ambiguity has been associated with the attractive properties of the compound ammonium-acetate (NH(4)Ac). NH(4)Ac has been used in behavioral assays both as a chemosensory neutral compound and as an attractant. METHODOLOGY/MAIN FINDINGS Here we show that over a range of concentrations NH(4)Ac can be detected both as a water soluble attractant and as an odorant, and that ammonia and acetic acid individually act as olfactory attractants. We use genetic analysis to show that NaCl and NH(4)Ac sensation are mediated by separate pathways and that ammonium sensation depends on the cyclic nucleotide gated ion channel TAX-2/TAX-4, but acetate sensation does not. Furthermore we show that sodium-acetate (NaAc) and ammonium-chloride (NH(4)Cl) are not detected as Na(+) and Cl(-) specific stimuli, respectively. CONCLUSIONS/SIGNIFICANCE These findings clarify the behavioral response of C. elegans to NH(4)Ac. The results should have an impact on the design and interpretation of chemosensory experiments studying detection and adaptation to soluble compounds in the nematode Caenorhabditis elegans.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two distinct types of neuronal asymmetries are controlled by the Caenorhabditis elegans zinc finger transcription factor die-1.

Left/right asymmetric features of animals are either randomly distributed on either the left or right side within a population ("antisymmetries") or found stereotypically on one particular side of an animal ("directional asymmetries"). Both types of asymmetries can be found in nervous systems, but whether the regulatory programs that establish these asymmetries share any mechanistic features is...

متن کامل

The Caenorhabditis elegans odr-2 gene encodes a novel Ly-6-related protein required for olfaction.

Caenorhabditis elegans odr-2 mutants are defective in the ability to chemotax to odorants that are recognized by the two AWC olfactory neurons. Like many other olfactory mutants, they retain responses to high concentrations of AWC-sensed odors; we show here that these residual responses are caused by the ability of other olfactory neurons (the AWA neurons) to be recruited at high odor concentra...

متن کامل

Multiple sensory G proteins in the olfactory, gustatory and nociceptive neurons modulate longevity in Caenorhabditis elegans.

The life span of the nematode Caenorhabditis elegans is under control of sensory signals detected by the amphid neurons. In these neurons, C. elegans expresses at least 13 Galpha subunits and a Ggamma subunit, which are involved in the transduction and modulation of sensory signals. Here, we show that loss-of-function mutations in the Galpha subunits odr-3, gpa-1 and gpa-9, in the Ggamma subuni...

متن کامل

Odorant-specific adaptation pathways generate olfactory plasticity in C. elegans

Following prolonged exposure to an odorant, C. elegans exhibits a diminished response to the odorant for several hours. This olfactory adaptation is odorant selective; animals can adapt independently to different odorants sensed by a single pair of olfactory neurons, the AWC neurons. The mechanism of olfactory adaptation is genetically complex, with different genes required for adaptation to di...

متن کامل

A circuit for navigation in Caenorhabditis elegans.

Caenorhabditis elegans explores its environment by interrupting its forward movement with occasional turns and reversals. Turns and reversals occur at stable frequencies but irregular intervals, producing probabilistic exploratory behaviors. Here we dissect the roles of individual sensory neurons, interneurons, and motor neurons in exploratory behaviors under different conditions. After animals...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS ONE

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2008